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The mathematical  structure, the field equations, and fundamentals  of the kine- 
matics of gcneralizations of general relativity based on semisimple invariance 
groups are prcsented. The structure is that of a generalized Kaluza-Kle in  theory 
with a subgroup as the gauge group. The group manifold with its Car tan-Kil l ing 
metric forms the source-free solution. The gauge fields do not vanish even in this 
case and give rise to additional modes of free motion. The case of the de Sitter 
groups is presented as an example where the gauge field is tentatively assumed to 
mediate a spin interaction and give rise to spin motion. Generalization to the 
conformal group and a theory yielding features of Dirac's large-number hy- 
pothesis are discussed. The possibility of further generalizations to include 
fermions are pointed out. The Kaluza-Klein  theory is formulated in terms of 
principal fibre bundles which need not to be trivial. 

1. INTRODUCTION 

The general theory of relativity indicates hardly any preference for a 
local invariance group. Globally there exist a multitude of Riemannian 
space-times which are realizations of various groups of transformations. 
Locally even a principle of equivalence can be formulated for most of their 
metrics in analogy to that of a locally Euclidean metric (Halpern, 1977). 
Spaces of constant curvature have the same number of Killing vectors as flat 
space, which is locally their limit of vanishing curvature, and they can be 
distinguished from it only if their curvature is large enough to be detectable. 

The spinor equations of physics have been formulated for Minkowski 
space and the Poincar6 group but a formulation for higher-dimensional 
homogeneous Lorentz groups has also been given (Dirac, 1935, 1936). One 
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can thus say that the spinor formulation which was so successfully intro- 
duced to physics by Dirac does give preference to certain local invariance 
groups. Accepting this view, there remains still the choice between the 
Poincar6 group, the simple de Sitter groups S0(3,2) and SO(4,1) and 
possibly some more complicated groups. Arguments for preference of a 
simple or at least semisimple invariance group can be based on speculations 
on the interrelation of all phenomena in nature which is not well compatible 
with Abelian invariant subgroups--and before all on mathematical beauty. 

We assume in the present paper the existence of a semisimple local 
invariance group. Having made this crucial step, we will not assume or even 
expect to regain all of Poincar6 group physics in the limit of a vanishing 
parameter. Too much of the fundamental mathematical structure is mod- 
ified. Empirically the symmetry is broken and the structure of resulting 
gauge fields, for example, will not depend alone on the value of such 
parameters. 

We go one step further by relating the physical quantities to projections 
on space-time of covariant quantities on the group manifold: Most reali- 
zation spaces of Lie groups are the factor spaces of the group and a Lie 
subgroup (Steenrod, 1974). The manifolds of the de Sitter and anti-de Sitter 
universes, for example, are isomorphic to the factor spaces S0(4, 1)/S0(3, 1) 
and S0(3,2)/S0(3, 1). A natural projection ~r exists from the points of the 
group manifold on the points of the factor space. The orbits of subgroups or 
even vector fields associated to the points of the group manifold (the latter 
are usually themselves factor spaces within different subgroups) can thus be 
projected on the points of the space-time manifold. The physical quantities 
depending on space-time we shall assume to be related to such projections. 
The next section presents the described features in detail with the help of 
principal fibre bundles. The metric of space-time of the universe is found as 
the projection of the Cartan-Kill ing metric of the group manifold. The 
trajectory of a test particle is approximated in this approach by the 
projection of a suitable geodesic of the group manifold (which is an orbit of 
a one-dimensional subgroup). This projection yields geodesic motion on 
space-time as a special case. The general motion has a helical component 
and is tentatively ascribed to a particle with spin. A classical free helical 
motion has of course not been observed in the laboratory: it may, however, 
exist in very large or very small domains. We speculate that quantization of 
the complicated nonlinear differential equations governing this motion 
(Halpern, 1978, 1979, 1980) may exclude other observability than that as the 
spin of elementary particles, similar as the particle wave character remains 
hidden to macroscopic observation. The anomalous motion results from the 
presence of "cosmological gauge fields" that do not vanish even with 
source-free solutions of the field equations. One could consider working 
with the simple equations of motion in which these fields and the "charges" 
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occur explicitly. This would mean that one has to work with a "Vielbein" 
formalism supplementing the metric. The point of view adopted in the 
present work is that the equation should be formulated in such a way that 
the constants labeled by C M do not occur in the four-dimensional formula- 
tion. Their elimination results in the mentioned more complicated equation. 
We also reject the alternative to make the parameters C M a priori unob- 
servably small. This would mean to cover up new features of the theory 
instead of exploring them. The C M may have to occur in solutions of the 
equations but the hope is that the latter will show us how to quantize them. 
We have in general avoided the temptation to insert arbitrary constants into 
the theoretical structure. The radius of the universe in the SO(3,2) theory 
has been gauged to unity and is assumed to be the reciprocal of the 
gravitational parameter. 

A global formulation of Kaluza-Klein theories has been given some- 
what prior independently by R. Kerner (1981). This paper and a preprint 
contain interesting field theoretic applications. Other applications to field 
theory were suggested by W. Mecklenburg (1979). None of the theories 
known to the author have hitherto attempted to consider the universal 
geometrical structure of an invariance group as a guide for the interactions 
which leads to the new features in the present paper. Some previous papers 
of the author have the same concept but still a mathematically incomplete 
formulation (Halpern, 1980b, 1981). 

Section 4 shows how more general theories can be built on this 
mathematical structure. The presentation of D. Ebner (1981) made the 
author fully realize how only group theory need (and probably should) be 
used to extend the theory to include fermions. 

A chief motive of the present research was the construction of a field 
theory in accord with Dirac's large-number hypothesis (Dirac, 1979). The 
latter requires not simply a variation of the gravitational parameter with 
time but rather a variation of all units determined by quantum physics 
relative to those of gravitational physics. A more general theory than that by 
Jordan and Thiry (1948) seems to be required to achieve this. The example 
of SO(4,2) given in Section 4 shows how such theories based on the 
principles suggested here can be constructed. The investigation of the 
properties of such theories may in itself be stimulating. Testing their validity 
in nature can irrespective of the result only help to enrich our knowledge. 

2. STRUCTURE OF THE THEORY ON THE GROUP MANIFOLD 

We consider the manifold of an r-parameter semisimple Lie group G 
with (r  - k)-parameter semisimple closed Lie subgroup H. The example we 
shall most frequently refer to is G = S0(3 ,2)  and H =  S0(3,  1) with k = 4. 
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The  subgroup  H impl ies  the exis tence of  a sys tem of  impr imi t iv i ty  on G 
that  means  a set of  ( r -  k ) - d i m e n s i o n a l  subvar ie t ies  h o m e o m o r p h i c  to H, 
one  th rough  each po in t  of G, which are t r ans fo rmed  into each o ther  by  
t r ans la t ions  of G (Eisenhar t ,  1933). Each subvar ie ty  is a coset  of  H and  an 
orb i t  of  H on G. Let  G / H  be the space of  the left cosets  of  H in G and 7r the 
na tu ra l  p ro jec t ion  of  G on G/H:  7rb ~ bH b ~ G. They  form the p r inc ipa l  
f ibre  bund le  P(G, Tr, G/H,  H, H)  with typical  f ibre  H and group H,  ac t ing  
on H by left t rans la t ion  (Steenrod,  1974). 

We  can choose  a base  of  l e f t - invar ian t  vec tor  fields A R (R  = 1 - - - r )  for 
G such that  the last  r - k  basis  vectors  A~, t ( M >  K )  form a base  of  the 
subgroup  H. We choose  from now on capi ta l  or  small  Lat in  indices  f rom 
A . . - K  for values 1 - . . K ,  f rom L - - - Q  for values k + l . . . r ,  and  f rom 
R- - - Z for values 1 - - - r ( r  = d imens ion  of G).  The  s u m m a t i o n  conven t ion  
of  doub le  indices  extends  also over  those values that  are  ind ica ted  by  the 
choice  of the indices. F o r  example ,  BE B~z sums only over  indices  E = 1 �9 - �9 k, 
BMB M only over  indices  M = k + 1 . - �9 r, and Bs Bs over indices  S = 1 �9 �9 �9 r. 

The  basis  vectors  fulfill the c o m m u t a t i o n  re la t ions:  

[AR, As] = Cs r (1) 

The  dual  base  of  le f t - invar ian t  l - fo rms  A R fulfill the M a u r e r - C a r t a n  

equat ions :  

dAR + �89 A Ar=O ( l a )  

( d  denotes  the exter ior  derivat ive) .  A basis  of  r igh t - invar ian t  vector  fields 

A-R and  l - fo rms  A-~ fulfill 

=cL /l') 

d,4 n -- �89 Xs A XT ( l a ' )  

A R i e m a n n i a n  metr ic  u is given on the man i fo ld  of the semis imple  
group,  in our  base  its covar ian t  c o m p o n e n t s  are 

YRs = C f f v G ,  (2) 

( C a r t a n - K i l l i n g  metric) .  The  base  can be chosen  so that  YRs assumes only 

values:  YRs = -+ 6Rs. 
A metr ic  g is then def ined  on the base  man i fo ld  G / H  of the p r inc ipa l  

f ibre  bund le  P by the p ro jec t ion  of  the con t r ava r i an t  metr ic :  g = 7r'y. This  
p ro jec t ion  is i n d e p e n d e n t  of the po in t  on the fibre over  the po in t  x of  the 
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base manifold. This follows because all base vectors An,A R are Killing 
vectors: 

h, AR] : 0  (3) 

This is in particular true for the vertical vectors A M which lay in the fibre 
over x and have vanishing projections ~r'A M = 0. A homeomorphic  mapping  
%: P ~ G / H  • H exists in a neighborhood U~(p) of any point  p of the base 
manifold so that lr-~U~---, U~ • H and canonical projection oq)=  zr. Local 
coordinates  can therefore be introduced for which (Eisenhart, 1933) 

A•,=O, (~r 'y) '" '  --- 0, (~r 'y)u = g'-' = 3, ' '  (4) 

(consider designation of indices given before). Equations (2) and (3) lead 
then to 

I I t y.,A M = 0 (4a) 

( comma denotes ordinary derivative). The principal fibre bundle P is trivial 
in most of the examples dealt with, so that P -- G/H • H is globally valid. 
The choice of a de Sitter group for G and of S0(3,1) for H yields the 
corresponding de Sitter universe with its metric as the base space. 

We are able to construct a 1-form to,, on P with values in the Lie 

algebra of H: 

to,,=eMAM(u), eM=L ' ) 4 , , (u )  (5) 

with u E G a point  on P. This form is left invariant and fulfills 

to,,( t, ) = L,, " v ,  (5a) 

if qr  H, ut remains on the same fibre as u, and we can identify in the 

present case 

t~qu = uq (6) 

the right action of H on P (Nomizu,  19562) because the bundle space is 

itself the group manifold of G. 

2This old presentation seems still to be one of the best short readable accounts with least 
printing errors. For a new presentation see Y. Choquet, C. DeWitt. M. Dillard (1977). 
Analysis, Manifolds and Physics, (North Holland). 



7 9 6  H a l p e r n  

A left-invariant connection with horizontal vector space V h with base 
(A E) (E  = 1 - . - k )  exists if the commutators of the AM ( M > k )  with every 
At:. lay in V h (Nomizu, 1956). 

The left invariance of the connection form w [equation (5)] implies 

~ ~t 6dRqu[RqOu ] - l '  t _ I' t I' = L u q  RqO u - L q  R q L  u t~ u (6a) 

A (local) cross section q ( x ) , x r  may be chosen. One finds then from 
equation (6a) by equating equal components of t~ in a local natural base: 

m, (6b) 

q depends only on the first k coordinates which correspond to those of B so 
that the inhomogenous term on the right vanishes for t > k. A, M, of this term 
depends only on q not on u. 

The curvature 2-form fL 

a = d ~ 0  + [ ~ , ~ ]  (7) 

transforms homogeneously 

~2( t~ qU ) = Ad( q-  ~ )~2( u ) (7a) 

Because of the Maurer-Car tan  equations (la), f2 does not vanish on the 
group manifold. The components for a natural base are 

~2ik=tCEMFAiE /~AF eM ( E , F < ~ K )  (8) 

The principal bundle P can be identified with the bundle of Lorentz 
frames over B: The commutation relations equation (1) yield for the 
differential of the variation of the horizontal base vectors with the points on 
a fibre over B in a natural base: 

0A'E F i 
~ym A ~  = -- CEMA F ( lb )  

This corresponds to a Lorentz transformation of these vectors which 
are orthogonal with the Cartan-Kill ing metric 7. The same is true for their 
projection on the base B with the projected metric g. 

The Lorentz bundle is a reduction of the frame bundle. Our connection 
on P results thus in a linear connection, 

To see the relation let us consider the k-dimensional surface formed by 
the trajectories of all the horizontal left-invariant vectors through a point P0 
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of P. As will be discussed later, each trajectory is a geodesic of 3' in P and its 
projection on B is a geodesic of g. The corresponding linear connection can 
because of this differ from the Christoffel connection of g at most by a 
torsion tensor. We can see that the torsion must vanish at the origin (which 
can be chosen arbitrarily) if in the limit of infinitesimal displacement the 
projection of the left-invariant horizontal vectors are parallel displaced with 
the Christoffel connection of the corresponding projections at the origin. 
This can be seen to be the case for our example of the de Sitter groups. The 
connection and the linear connection here form an entity. 

The Cartan-Kill ing metric ~ on the group manifold of a semisimple 
group fulfills the relation 

1 , ( r l )  
R,,v=~3%, or R, ,~-~u -~- -~  y , ~ = 0  (9) 

3. GENERALIZATION TO A THEORY OF KALUZA-KLEIN TYPE 

Equations (9) have the form of sourceless Einstein equations with 
cosmological member for the metric (2) of the group manifold. The physical 
units of length on the base manifold determine the physical magnitude of 
this constant and the related cosmological member of the equations for the 
projected metric on the base manifold. Making the radius of the de Sitter 
universes the unit leaves its cosmological constant of conventional magni- 
tude. 

We want to generalize to the presence of inhomogenous sources and 
general metrics on the base manifold. We consider thus more general 
solutions with the right-hand member of equations (9), relaxing the geomet- 
rical conditions on the r-dimensional manifold P somewhat: P remains a 
principal fibre bundle with the same typical fibre and group H and a base 
manifold B of the same topology as G/H. The metric ~, is still of the form of 
equation (2) with the same structure constants--however,  of the base 
vectors B R only the last (r - k) B m can  be identified with the A M. They are 
vertical vectors tangent to the fibre. Their commutation relations with all 
the other base vectors are still the same: 

[BM, BRI=CSRB s ( R , S = I  . . . r , M = k + l  . . . r )  (1") 

but the commutation relations between the first k B E are not prescribed. In 
a natural local base we have thus A M = B u depending only on the last 
( r -  k) coordinates y ' .  Equation (lb) remains valid; it is the only restric- 
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tion on the first k components  of BE: 

B, B.,--. CFMB,F E,m M ( lb ' )  

This allows a general metric 

yik = g,k = URg#'" RSOkDs = Bil!T EFB~ 

on the base space. [Equations (4) and (4a) are valid in our coordinates.] For 
the dual base we have 

B, ff = A,~, t, B,f = 0, B, M arbitrary 

Equation (3) is now restricted to 

It, B.] =0 (3') 

These generalizations allow us still to define a connection with the Lie 
algebra valued form 

% = eMBM(u), e M = s  

if u is mapped into (x ,q ) ,  x E B ,  q ~ H .  The B r form a base for the 
horizontal vector space V h. 

Because of equation (3') the B M remain Killing vectors and even 
equation (4a) is still valid, so that the metric projected onto B is well 
defined. The projection of the tangent vectors of a given geodesic in P on V~, 
is therefore at all its points equal (Halpern, 1981). The total horizontal 
component  of the normalized tangent vector of a nonminimal geodesic is 
therefore also constant and a tangent vector horizontal at one point remains 
horizontal. 

Let the tangent vector be 

A = CRBR = .9 (C M = const) (10) 

R t - S - - t  ~ 4 ' = ( C  BR), B~C = y (lOa) 

~;'+( t } (10b) 

and for the projection on B with the same parameter  

~ (4) 
i ) 2Lie* = FMi,2*CM (10C) s + jk  
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with 

x = r r y ,  CM=YMRC R, F M = d B M + •  ".~pQ ~ /X B 0 

( M , P , Q > K )  (lOd) 

The projection of a geodesic of P is thus a geodesic of B iff C M vanishes. A 
term resembling the Lorentz force occurs if C M ~ O. According to equation 
(8), the corresponding analogs of the electromagnetic field F M do not even 
vanish in case of the group manifold P = G. The generalized Kahiza-Klein 
theory considers the constants C M as generalized charges (not, i.g., electric). 
The projection of a geodesics in P on B should be an approximation to a 
particle trajectory. [A physical object can in a dynamical theory hardly be 
well approximated by a point in R r because the homogenuity condition 
equation (3') of the metric is not well compatible with sources too restricted 
in the vertical direction.] 

The theory admits thus an additional mode of free motion in the 
vacuum for particles with generalized charges. This motion for suitable 
values of the C M related to the C A will resemble the spiral motion of a 
charge in a magnetic field. This seems to be in contradiction to experience 
in empty space. 

The author has repeatedly pointed out that this need not be so 
(Halpern, 1978, 1979, 1980). The charges are the quantized analog of C M in 
equation (10c). Let us consider the de Sitter groups and tenatively associate 
the six C M to the spin of a particle. The alternative motion must only 
manifest itself in microscopic domains somewhat in analogy to the wave 
character. The spin is particularly suited for such a model because it has a 
classical analog. The author has suggested to eliminate the C M from 
equation (10c) and investigate the quantum analog of the resulting nonlin- 
ear system of differential equations of higher order. 

We consider here only the kinematical aspects and leave the difficult 
problem of the spin motion as a conjecture. The geodesics are the orbits of 
one-dimensional subgroups on the group manifold. We may generalize the 
procedure and consider even the projection of the orbits of higher-dimen- 
sional subgroups or of their factor spaces from P = G onto B. We obtain 
then the systems of partial differential equations of higher order which 
describe the projected surfaces on B. 

The bundle P is also here still related to the Lorentz bundle: equation 
( lb ' )  shows that the components of the horizontal base vectors B L. at 
different points of the fibre over a point of B are related by a Lorentz 
transformation. 

The canonical l-form O which maps vectors on P into the components 
of their projection in the frame determined by the point on the fiber can be 
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expressed in a local natural frame: 

Or' = O~( p)A) ' (  p )A~( p ) = 0~( p )6/ (11) 

But the horizontal vectors A', 

Oi.tA'=O ( l l a )  

so that the torsion form 

|  (12) 

vanishes. The fact that horizontal geodesics are projected on geodesics on B 
suffices then to show that the linear connection associated to our connection 
obtained from the connection on P is the Christoffel connection. The 
connection and linear connection can also in this general case be regarded 
an entity. 

We can choose for the Lagrangian of empty space the invariant density 
~ - R  (R =curva ture  invariant in r dimensions). In a natural frame this 
quantity does not depend on the last (r  - h) coordinates because the metric 
fulfills the Killing equations (3'). We are thus able to use this Lagrangian 
even in a k-dimensional formulation and find apart from a cosmological 
member 

= ~/g(k)( RIk)+ ~" ~ IFikMFikMI 

F 2 ' :  B , - B?'k + 
(13) 

The de Sitter universes are solutions of the homogenous equations resulting 
in case of the de Sitter groups. 

4. BRIEF D I S C U S S I O N  OF F U R T H E R  GENERALIZATION 
A N D  R E S U L T S  

The previous sections gave an account of the mathematical structure, 
the field equations, and some of the kinematics of a generalization of 
general relativity based on semisimple local invariance groups. The mathe- 
matical scheme is quite general but the example given was that of the 
de Silter groups. The theory in four-dimensional form supplements the 
metric field by gauge fields related to it. Avoiding the introduction of 
arbitrary coupling constants, the couphng to the metric field is determined 
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in our example only by the extention of the universe. The metric of the 
theory will thus in general modify solutions of Einstein's vacuum field 
equations by introducing a source. This may enable us to test the theory 
from precise observation of planetary motion alone. Crucial effects should 
be expected for spinning test bodies if the gauge field really mediates a spin 
interaction as its form would suggest) 

The gauge group of this model is the subgroup S 0 ( 3 , 1 )  (Lorentz 
group). We arrive at a theory with the de Sitter group as gauge group if we 
choose for the group G a pseudo-orthogonal group in six dimensions--  
SO(4,2), for example. 

The base manifold B is then a five-dimensional space of constant 
curvature. The action of the conformal group on space-time can be obtained 
by choosing the null hyperquadrix where the constant R is zero (Dirac, 
1936). This interesting case does not fit our construction in every respect, 
because the metric projected on the base in singular. We also want to get 
away from the Poincar6 group and choose thus R > 0. 

The metric obtained by projection on the five-dimensional base can be 
considered that of an (original) Kaluza-Klein  theory if it has one suitable 
Killing vector field. This condition can be met by a further restriction on the 
metric of the bundle space. The five-dimensional formulation has already 
ten gauge fields corresponding to the six of our previous example. These 
fields are projected on the four-dimensional space-time (the base space of 
the five-dimensional bundle B which forms the base of the 15-dimensional 
bundle P). An additional gauge field results which is interpreted as the 
electromagnetic field. The latter need not be independent of all the other 
gauge fields (depending on the lift of the Killing vector field on B) thus 
allowing the formulation of more unified field theories. The five-dimen- 
sional formulation allows us to adopt straightforwardly the projective 
formalism of Veblen (1932) and the generalization to a theory with varying 
gravitational parameter of Jordan and Thiry (1948). 4 The performance of 
such a generalization poses no difficulty. One has, however, to keep in mind 
that a theory that does justice to Dirac's large-number hypothesis must not 
only exhibit a variation of the gravitational parameter relative to the 
electromagnetic but relative to all dimensionless parameters determined by 

3An interaction with elementary particle spin alone should appear unlikely to a physicist 
because spin and orbital angular momentum can hardly be distinguished in complex systems. 
An apparent contradiction is eliminated by considering that for any orbital motion gravita- 
tional theory must t',tke into account the field of the binding forces (e.g., gravitational field) 
which couples to the gauge field. 

4The original idea was due to Einstein (unpublished). [See P. Bergmann, Annals of Mathe- 
matics, 49, 255 (1948); see also the work of Brans and Dicke.] 
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quantum physics--thus also relative to angular momentum (Dirac, 1979). 
The present theory can meet these general requirements better than the 
original theory of Jordan because it describes other quantized magnitudes 
besides the charge. A change of these parameters relative to the gravita- 
tional requires a change of inclination of geodesics in the bundle space, in a 
timelike direction on the base space. (That means a change of the C M of 
Section 3.) This change can be produced by a time dependance of the metric 
.~ m tl. 

The theory formulated until now does not describe the relation between 
spin and statistics. Supersymmetry can hardly be adopted to the present 
formalism which emerges from the properties of semisimple Lie groups. Dr. 
Ebner (1981) has recently shown how suitable Lie groups can extend and 
replace the supersymmetry transformations. New aspects for the generaliza- 
tion are thereby opened and work is in progress to explore them. 
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